‘ ! ! . LLNL-CONF-427633

LAWRENCE
LIVERM ORE
NATIONAL

wonrone | |/O Performance of a Large-Scale,
Interpreter-Driven Laser-Plasma
Interaction Code

T. Gamblin, S. H. Langer, B. Still, R. Hedges, M.
Schulz, B. R. de Supinski

April 13, 2010

Super Computing Conference
New Orleans, LA, United States
November 13, 2010 through November 19, 2010

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

I/O Performance of a Large-Scale,
Interpreter-Driven Laser-Plasma Interaction Code

Todd Gamblin, Steven H. Langer, Bert Still, Richard Hedges, Martin Schulz, and Bronis R. de Supinski
Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore CA 94550
{tgamblin, langer-steve, bertstill, richard-hedges, schulzm, bronis}@lInl.gov

Abstract—I1/0O to compute ratios of large-scale supercomputers
are falling and I/O systems are becoming dauntingly complex.
Applications may communicate with parallel filesystems through
special-purpose I/O nodes and large networks of file servers.
Peak bandwidth on such systems depends on the hardware,
the filesystem, and an application’s I/O patterns. Application
developers must understand the I/O system’s architecture in
detail to obtain good performance. Many large simulations are
interpreter-driven, which may increase the difficulty measuring
low-level I/O operations. Obtaining detailed I/0 measurements
may be a scalable I/0O problem of its own for simulations that
run on hundreds of thousands of cores,

We have developed a tool to scalably measure and analyze
per-process I/O in interpreted environments. We describe our
experiences applying our tool to understand and tune the per-
formance of pF3D, an interpreter-driven laser-plasma interaction
code that regularly runs on over 200,000 cores.

I. INTRODUCTION

This paper discusses techniques to measure and optimize the
I/O performance of pF3D. pF3D is a multi-physics code that
carries out time-depemndent simulations of the interaction be-
tween a laser beam and a plasma in experiments being carried
out at the National Ignition Facility (NIF). pF3D simulations
currently use over 55 billion zones and work is underway on
a multiple beam simulation capability that will significantly
increase the number of zones. Full beam simulations run for
several weeks on massively parallel computers. pF3D has run
on 192K BlueGene/L cores and 144K BlueGene/P cores with
excellent scaling.

A checkpoint of the current state of a pF3D simulation
may exceed 20 TB and pF3D also saves frequent (smaller)
diagnostic data sets. Either of these dump processes can
consume more time than the computation unless care is taken
in writing the I/O package.

The ratio of I/O bandwidth to compute performance will
drop significantly in future large supercomputers. For example,
LLNL’s current 0.5 PFLOP/s Dawn system has a disk
bandwidth to peak floating point performance ratio of 384
GB/s per PFLOP/s while the 20 PFLOP/s Sequoia system
(targeted for production use in 2012) will have a ratio of 25.6.
That will significantly increase the I/O challenges faced by a
code like pF3D.

Computational steering has become popular in large parallel
simulations. The disk I/O, graphics, and code steering are
typically handled by an interpreter (e.g. Yorick or Python) and
the computational work is still done in a compiled language
like Fortran, C, or C++. Python may be used for the same

purpose. Using an interpreter for I/O improves programmer
and user productivity and makes it easier to try new I/O
strategies. The additional abstractions used by the interpreter
can hurt I/O performance if the programmer is not aware of
their implications.

It is clear that pF3D will face serious challenges in achiev-
ing the desired I/O performance on future systems. One of
the challenges in trying to improve the I/O performance of
a massively parallel code is the difficulty of gathering the
performance data required to evaluate alternate I/O strategies.
Caution must be exercised to avoid having the collection of
the performance data become a bigger challenge than the I/O
itself.

In this paper we employ a data collection technique that
greatly reduces the amount of performance data that needs to
be stored by collapsing data into equivalence classes.

II. PF3D OVERVIEW

pF3D is a multi-physics code that carries out time-
dependent simulations of the interaction between a laser beam
and a plasma in experiments being carried out at the National
Ignition Facility (NIF). pF3D solves wave equations for the
laser light and two kinds of backscattered light. The light
waves are coupled together through interactions with electron
plasma waves and ion acoustic waves.

pF3D has been implemented as a set of compiled C routines
connected to the Yorick interpreter (D. H. Munro, Computers
In Physics 9 (6), 609; yorick.sf.net). Yorick handles 1/0O,
graphics, input decks, and code steering during a run. Yorick
has a package called mpy that permits interpreted functions
to pass messages between tasks using MPL. mpy is used to
coordinate I/O and to implement the time step loop.

The equations are solved on a 3D Cartesian grid. Paral-
lelization is carried out by splitting the grid into equal chunks
with decomposition in all three dimensions. A NIF beam
is comprised of many small bright spots (“speckles”). An
accurate solution to the equations can be obtained only by
resolving the speckle structure, which requires the zones to be
at most a couple of wavelengths across. The laser wavelength
is roughly 0.3 pym and the plasma volume that needs to be
simulated is several mm across. The net result is that the
simulation of the interactions between the light waves and the
plasma over the full volume of one NIF beam requires over
55 billion zones. Efforts are currently underway to simulate

mailto:tgamblin@llnl.gov
mailto:langer-steve@llnl.gov
mailto:bertstill@llnl.gov
mailto:richard-hedges@llnl.gov
mailto:schulzm@llnl.gov
mailto:bronis@llnl.gov

the interaction between two NIF beams and those may require
hundreds of billions of zones.

The wave equations are solved in the paraxial approximation
which assumes all light waves are traveling nearly in the z-
direction (the laser propagation direction). The wave propaga-
tion and coupling are solved using Fourier transforms in xy-
planes. The Fourier transforms require message passing across
the full extent of a transverse plane. A significant fraction of
the run time is spent passing messages. The message passing
makes pF3D a tightly coupled, non-local code.

pF3D also solves the hydrodynamic equations. The light
equations are sub-cycled because light moves much faster than
sound waves. In a typical run, the light sub-cycle is the time
for light to cross one zone and the hydrodynamic equations
are solved every 50 sub-cycles.

Full beam simulations run for several weeks on massively
parallel computers. pF3D has run on 192K BlueGene/L cores
and 144K BlueGene/P cores with excellent scaling. Work is
currently underway to prepare pF3D for million way paral-
lelism on the upcoming Sequoia system.

pF3D has many variables in each zone, so the state of
the simulation occupies a large fraction of the computer’s
memory. A large pF3D currently writes 30 TB checkpoint
restart sets as a fault tolerance strategy. Write rates should be
high enough that pF3D spends most of its time computing.
The performance of current parallel file systems is not high
enough to permit us to write checkpoints to disk as often as we
would like to achieve high efficiency in the face of hardware
and software errors. pF3D uses checkpoints to memory or
solid state disk on X86 clusters to achieve the desired effi-
ciency without over burdening the file system (Scalable I/O
Systems via Node-Local Storage: Approaching 1 TB/sec File
I/0; Moody and Bronovetsky, SC08). We plan to extend this
technique to BlueGene systems in the future.

The scientific results of a simulation are extracted by exam-
ining how the state variables vary in space and time. The data
sets saved for volume visualization are compressed, but still
consume 10-20 TB by the end of current large runs. pF3D also
saves information on a few key planes (e.g. the entrance and
exit planes) very frequently during the run. This data (called
”spec dumps”) can be used, amongst other things, to generate
an estimate of the spectrum of the backscattered light for
comparison to data collected during NIF experiments. These
dumps are small compared to checkpoint or visualization
dumps, but they occur so frequently (every couple of light
sub-cycles) that pF3D still needs to write them at high data
rates. Obtaining high I/O rates for small dumps is a serious
challenge on current systems.

Parallel file systems work best if the hardware sees large,
contiguous data transfers. Large data blocks permits striping
across multiple RAID sets and enhances performance for a
specific block transfer. A block from pF3D does not need to
be large enough to stripe across all RAID sets since there are
many files being written simultaneously.

Yorick has an internal cache block system. The default size
of a cache block is 64 kB, but the user can increase the size.

Yorick accumulates data until a cache block is full, then it
issues a write() call to start the data on its way to disk. The
requirement for good I/O performance is thus that the cache
block be large enough, not that individual writes in the Yorick
interpreted language involve large numbers of bytes.

The operating system on the compute node, the operating
system on the I/O node, or the computers that are physically
connected to the RAID sets may all choose to provide further
buffering. This buffering may lead to large writes to the
physical disk even if the Yorick cache block is “too small”.
The complexity of this buffering system makes it hard to assess
whether an I/O scheme is using appropriate sizes for its write
requests.

There is a good chance that a seek to a location other than
the current byte in the file will force a flush of all layers
of buffer to the physical disk. A file format that alternates
between writing ’symbol table” information in the middle of
the file and data at the end file will lead to lots of small writes
to physical disk unless the individual items that are written are
large.

A good first step towards high I/O performance is thus to
ensure that writes progress sequentially from byte zero to the
end of the file rather than seeking back and forth through the
file. This allows buffering to mask the size of individual writes
within the program. Only after writes are sequential does the
programmer need to worry about the size of individual writes.

Achieving high performance on large parallel file systems
is not easy. A dump file set that is perfectly balanced at an
algorithmic level may see significant imbalances induced by
slow performance from individual RAID sets (e.g. a RAID
set that is rebuilding a parity disk). There are also important
differences between the popular parallel file systems. A pro-
grammer needs to handle the interactions between messages
moving across the interconnect, I/O nodes moving bytes to
the file system front end nodes, block sizes of the underlying
disk stripes, etc. Metadata operations are expensive for large
file sets and can have significantly different characteristics
on different parallel file systems. Performance may also be
significantly affected by other jobs reading and writing to
the same parallel file system. The OSTs to which data are
assigned in a Lustre file system are at best loosely under the
programmer’s control, but they may have a significant impact
on performance.

III. PF3D I/O SCHEMES

All I/O in pF3D is written in the Yorick interpreted lan-
guage. Files are written using normal Posix I/O, not MPI
I/O. High performance can be achieved if the code developer
understands the characteristics of the parallel file system and
crafts a suitable I/O scheme.

pF3D is a follow-on to a scalar Fortran code called F3D
that ran on Cray Y/MP and J-90 systems. The original target
for pF3D was a few hundred processors. At this scale, writing
an independent checkpoint file to disk from each process and
passing the information for the spec dump back to the MPI
rank zero process for output to a single spec file worked well.

Visualization dumps were added when thousand processor
systems became available and were written in a file per process
mode.

When ten thousand processor systems became available, it
was no longer viable to gather all the information needed for
spec dumps back to the rank zero process both because it
was an Amdahl’s Law performance bottleneck and because
rank zero might not have enough spare memory on BlueGene
systems. pF3D switched to a scheme where a subset of
the processors are assigned as I/O group leaders that are
responsible for all disk I/O for their group members. This
scheme still uses Posix I/O since only one process writes to
a given file. mpy is used to pass information to the group
leader and to coordinate the activities of the group members.
The number of processes per I/O group is a tunable parameter.
I/O groups tend to have more members on BlueGene systems
since they have slower processors and less memory per core
than our X86 systems.

Several variants of this dump scheme have been written
over the last few years. They have improved performance, but
more rapid progress could have been made if we had accurate
and detailed performance measurements from large runs. This
paper discusses a data collection scheme that gives the pF3D
developers this information.

To simplify the presentation of the performance measure-
ments, we will name several I/O strategies.

a) One File: This is the scheme where the spatially
decomposed information required for the spec dumps is sent
to the rank zero process and assembled into full planes
there. Planes currently have roughly 2000x3000 cells and
a typical run saves several variables on 8-10 planes. This
scheme has the virtue that scientists can easily examine the
re-assembled planes, but it has nothing to recommend it from
the performance point of view. This scheme has never been
used for visualization dumps.

b) Multi-Message: This scheme writes one file per I/O
group. The group members send their data to their group leader
using one mpy message per variable. The group leader writes
the variables to the file with a name reflecting both the domain
and the variable name.

In the case of visualization dumps, all processes send the
same amount of data back to their group leader and the amount
of data per message is large enough that interconnect latency
is not an issue on current machines.

The planes of data for spec dumps intersect some domains
and not others. As a result, group members send different
amounts of data back to their group leader. The amount of
data per message is smaller than for visualization dumps and
interconnect latency might be a performance issue.

c) Single Message: Yorick recently added the capability
to write in-memory files. In this I/O scheme, each process
writes all of its data to a file in its own memory. The bytes
making up this file are sent as a single message to the group
leader which then writes the data to the group’s file. In the
case of spec dumps, the data is written as a single variable
per domain. This results in many logical files within a single

physical file. Post-processing software opens one logical file at
a time. Visualization dumps may either write a logical file per
domain (like spec dumps) or write each individual variable
out with the same names as the multi-message scheme for
compatibility with existing visualization software.

d) BlueGene I/0O Mapping: There are variants of these
schemes that deal with the special characteristics of the
BlueGene systems. BlueGene L and P systems have sets of
compute nodes physically connected to an I/O node (psets).
I/O requests are function shipped from a compute node to its
I/O node. If I/O groups are assigned as contiguous chunks of
MPI ranks, the group leaders are not evenly divided between
the I/O nodes. For some choices of group size, there are /O
nodes that don’t have any I/O group leaders amongst their
pset. This results in reduced I/O performance. To deal with this
feature, pF3D now has “uniform I/O groups” and “BlueGene
aware 1/O groups”. The BlueGene aware groups assign an
equal number of group leaders from each pset. The division
of the group leaders amongst the psets must be independent
of the assignment of MPI ranks to physical locations on the
interconnect torus because complex mappings may be required
to maximize the message passing in the Fourier transforms.

e) Startup I/O: There is one other type of I/O that needs
to be optimized for very large clusters. That is the reading of
yorick’s initialization files and the initial physical conditions
for the simulation. Reading these files had never been a serious
performance concern because they are read once at the start of
the run. All processes read exactly the same files, so caching
on the file server always worked well. LLNL recently turned
off file caching on one of its Lustre file systems to increase
performance for streaming I/O. That dramatically slowed the
performance for reading the initialization files. A temporary
work around has been to move the input files to an "NFS
toaster” which still has caching, but that might not scale well
on million core systems. A new version of mpy has recently
become available, and it has the ability to broadcast load files.
This approach should allow initialization to easily scale to over
a million cores and is currently undergoing testing.

IV. SCALABLY CLUSTERING PERFORMANCE DATA

pF3D 1/0O schemes involve copious network traffic and
require a large amount of I/O bandwidth. To understand the
causes of performance problems, it is necessary to collect
performance data from many processes in the system, and to
assess how efficiently they output data, either through MPI or
through the I/O system on a large cluster.

In pF3D, I/O performance measurement is challenging
for two reasons. First, pF3D may use upwards of 200,000
processes, and we need a scalable mechanism to gather
performance data from all of them. As mentioned, I/O to
compute ratios are decreasing rapidly in large systems, and
pF3D already makes heavy use o the host machine’s I/O
system. We cannot afford to ship large volumes of performance
data out of the compute partition, because it may interfere
with the pF3D traffic we are trying to measure. Second, pF3D
runs in the interpreted Yorick environment, and detailed I/O

Objects initially
distributed among
processes

Random sampling

Local K-medoids
clustering

Broadcast all
medoids

Find all nearest
medoids

000
35558

o

Sum dissimilarities

Score clusterings;
Select best i
Assign clusters

O]

: The CAPEK clustering algorithm.

performance information is not available in the interpreted
environment. Therefore, we must provide low-level instrumen-
tation to intercept key I/O and communication calls underneath
Yorick to understand the impact of different dump schemes on
the system.

To solve these problems and to enable detailed I/O analysis
at scale, we have developed the CAPEK clustering algorithm
[?]. CAPEK is designed for clustering massively distributed
performance data from large numbers of processors, and we
have shown its run-time to scale sub-linearly to hundreds of
thousands of cores. The advantage of this approach is that it
enables us to consider performance data as a set of equivalence
classes rather than as a large number of independent data
points. Each cluster in the output of the algorithm represents
a logical group of similar performance data points, rather than
the exhaustive set. This is useful both for gaining insight to the
data, in that it is easier for humans to understand, and for data
reduction, as a set of representatives from equivalence classes
is much smaller than the full, unprocessed set of performance
data.

CAPEK achieves this scalability through sampling. We give
a brief overview of the algorithm here to provide background
for our analysis. Figure ?? shows a high-level overview of
CAPEK. CAPEK takes as input a set of distributed perfor-
mance data elements and a distance metric defined on those
elements. The distance metric is used to determine which
elements are similar to each other and thus which elements
should be in the same cluster.

Initially, performance data (shown as gray circles) is dis-
tributed across all processes (represented by boxes). CAPEK
then selects a number of random subsets of the full set of
processes and aggregates them to a small number of worker
nodes. The workers perform sequential k-medoids [?] cluster-
ing on their subset of the full data. The sample size S needed
to ensure a reasonably accurate clustering is constant in the
limit, so the some-to-some gather can be done in at worst
O(log(P)) time for P processes, and the local k-medoids
clustering can be performed in O(S?) time, making the full
step worst-case O(log(P)). Once local clustering is done,
we broadcast medoids from local sampled clusterings to all
processes. This is also O(log(P)). Each process then chooses
its nearest medoid in each clustering in O(1) time, and we

use the Bayesian Information Criterion (BIC) [?] to select a
“best” clustering from the resulting distributed data. The BIC
can also be applied in O(log(P)) time. Once this is computed,

lo| each process assigns its local performance data element to its

own nearest cluster (shown in the figure with colors).

Once CAPEK has run, each process knows the cluster of
which it is a member, and it has copies of the representatives
from all other clusters that enable it to make inferences about
the distributed data set as a whole. This setup also enables
us to make scalable distributed statistical calculations on each
of the clusters, e.g. we can compute the mean, variance, max,
and min values in logarithmic time.

V. SCALABLE I/O METRICS

To assess the performance of pF3D at scale, we have
developed a custom suite of instrumentation and profiling
tools specifically for the interpreter-driven Yorick environment.
Specifically, we have developed interception routines to cap-
ture and measure the particular POSIX I/O and MPI calls
used by Yorick, and we have exported a small number of
marker calls that developers can insert into their Yorick code
to measure the performance of large-scale I/O dumps.

Using our framework, we measure MPI and I/O bandwidth
on all processes at runtime and we record the amount of time
spent in POSIX I/O routines and in MPI routines. In addition,
we record the transfer speed of these operations and trace
the instantaneous bandwidth over time for all processes in a
running pF3D application. We take the resulting bandwidth
trace and the MPI and I/O profiles and apply our clustering
algorithm to the data. We are then able to correlate equivalence
classes in the bandwidth trace data with equivalence classes in
the profile data, and this allows us to diagnose the root cause
of I/O performance problems on-line. Finally, to analyze the
performance properties of Yorick’s built-in buffering scheme,
we record per-process histograms of the bytes written per
POSIX write operations. We then correlate particular write size
histograms with high or low bandwidth in the parallel pF3D
run, which allows us to deduce which buffering strategies work
best in the Yorick interpreted environment.

To perform this type of analysis, we developed several data
structures, distance metrics, and instrumentation schemes for
Yorick. We describe each of these data structures here along
with its corresponding distance metric, and we describe how
we have input these structures to CAPEK.

f) High-level Yorick Instrumentation: At the highest
level, our framework requires support from the application
developer to demarcate I/O dumps in the source code. We
require this for two reasons. First, our aim was to develop
lightweight instrumentation, and we did not want to instrument
all calls in the MPI library or in the POSIX 1/O library. Further,
we did not want to incur any instrumentation overhead in
regions of pF3D where a dump was not being performed. We
require that the pF3D developers insert calls to indicate the
beginning and end of their I/O dumps, and we dynamically
enable tracing at the beginning of each dump and disable it at
the end of the dumps.

g) POSIX I/O and MPI profiles: Within each dump, we
use interceptor routines to measure the time spent in each of
a subset of POSIX I/O and MPI routines. We record separate
profiles for MPI and POSIX I/O so that we can understand
the relationship between MPI network traffic and I/O traffic
in large systems. To cluster profile data, we use the manhattan
distance on vectors of cumulative times in profiles, sorted by
the names of the routines being measured. The same type of
distance metric is used for MPI and POSIX I/O profiles.

h) Scalable bandwidth traces: In our interceptor rou-
tines, we record not only time spent in each routine, but
also total bytes transferred by the routine. This enables us
to approximate the net MPI and I/O bandwidth achieved by
each process. Because these traces may grow to be very
long, we use a smoothing technique to normalize a full trace
of I/O operations to a fixed-resolution, smoothed bandwidth
vector. For our tests, we found that XXX elements was
sufficient for accurate problem diagnosis. Again, we used
the manhattan distance between these vectors to cluster them
across processes.

i) Write size histograms: Finally, as mentioned, we
recorded histograms of the sizes of POSIX writes issued
by the Yorick interpreter. The number and size of bins was
tuned by hand for this work, but we are investigating adaptive
techniques for sizing these histograms so that we can use them
in a fully generic, production version of our prototype tool. To
cluster histograms, we used a method similar to that for our
profiles: we applied the manhattan distance to the bin values
of histograms.

Using these techniques in conjunction with CAPEK cluster-
ing has allowed us to explain I/O dump timings in more detail
and to understand the root causes behind the behaviors we saw
for various parallel filesystems. We discuss these results and
our conclusions in the following sections.

VI. RESULTS

We have run pF3D simulations with a variety of I/O
schemes on several systems. We have run on three BlueGene/P
systems. dawndev at LLNL is a small system with a Lustre
parallel file system and 16 compute nodes per I/O node.
Intrepid at ANL has both GPFS and PVFS parallel file systems
and 64 compute nodes per I/O node. Dawn at LLNL has a
Lustre parallel file system and 128 compute nodes per /O
node. These systems provide our key results. We also ran a
few tests on Opteron Infiniband clusters to check performance
with more zones per process. The Opterons send their 1/O
across the IB interconnect to the cluster’s I/O nodes. The I/O
nodes then send the bytes to the parallel file system.

Figure 2 shows the time spent by each process in collecting
its spec data in an in-memory file plus the time until the
message to the I/O group leader starts to be received. Each
process sends the same amount of data each time, but there is
large variability in the time from dump-to-dump. In this case
the time is short enough that it does not impact the run time
of pF3D. That might change on future systems, so we would

Spec dump time vs. trial for each process

1.0

0.0

Fig. 2: This figure shows the time spent by each process in
collecting spec dump information in a test run on dawndev.
The x-axis is the dump number and the times for each process
are connected by line segments.

like to obtain data that would explain the source of variability.
This run used BlueGene aware groups.

Figure 3 shows a histogram of the time the I/O group
leader spends receiving spec data from its group members
and writing it out to disk. Yorick’s cache block size had no
impact on the I/O performance for this run (the black and green
curves are basically equivalent). The multi-message dumps had
a shorter average time, but the maximum time was similar.
The simulation cannot resume running until all data has been
written out to disk, so it is the slowest time taht matters. Lustre
file buffering was turned on for this run.

Figure 4 is a histogram of the time spent for group members
to assemble their visualization data and start sending it to their
group leader. All three runs have similar performance. That is
reasonable given that this time does not include any writes to
disk.

Figure 5 shows the time spent supervising a visualization
dump. The times are essentially equivalent for all three runs.
The files were identical in all three cases and the time is
dominated by disk I/O, so the times should be nearly the same.

Figure 6 shows that the time to write a checkpoint restart file
clusters fairly closely for these small (1024 processor) runs.
We have observed over a factor of two variability in some
large runs, presumably due to the vagaries in the performance
of the various Lustre OSTs. A simulation cannot continue
until all processes have finished their checkpoints, so having

Time for supervisor to write all spec data
Fororoporc oo borororona oo boron

1
3

07‘\‘\,‘/\,\‘\‘\‘\‘\%

N An_
‘\‘\‘\‘\

0.0 0.5 2.0

time(sec)

Fig. 3: This figure shows a histogram of the time the I/O
group leader spends receiving data from its group members
and writing it out to disk for several 1024 process runs on
dawndev. The black curve uses a Yorick cache block size of 1
MB and single message dumps. The green curve is the same
as the black curve except that it uses Yorick’s default cache
block size of 64 kB. The blue curve uses a cache block size
of 1 MB and multi-message dumps.

a few stragglers finishing late can greatly reduce effective I/O
performance.

J) Hypothesis testing: One of the steps in improving 1/O
performance is to form hypotheses about how I/O methods
interact with the hardware. A sample hypothesis is that short
messages hurt the I/O performance of spec dumps. The results
presented in the figures show that message size has little,
if any, impact on I/O performance in these runs. Achieving
good I/O performance at the scale of Sequoia and beyond
will require us to make much more sophisticated hypotheses.
The detailed data from large runs enabled by the clustering
technique will provide us with the information necessary to
prove or disprove these hypotheses.

VII. FUTURE WORK

The instrumentation described in this paper collects data
on the compute nodes. To get a complete picture of I/O
performance, we also need instrumentation on I/O nodes (e.g.
to assess congestion due to simultaneous access from many
clients) and on the computers that are part of the parallel file
system (e.g. to determine the OSTs assigned to a particular

Time to assemble visualization data

J\\\\‘\\\\“\\\\‘\\\\‘\\\\‘\\
2500 —

500 —

(& I I R B R
. 25

I N T e R I R
0.0 0.5 1.0 15 2.0

time(sec)

Fig. 4: This figure shows a histogram of the time spent for
group members to collect their visualization data and start
sending it to their group leader. The colors have the same
meaning as in figure 3.

file by Lustre or to measure the time required for metadata
operations). These areas will be a focus for our future work,
as well as continuing to work on scalability as we move to
tens or hundreds of millions of compute threads.

[?]
VIII. CONCLUSION

The results presented in this paper show that we have
the tools necessary to gather performance data for massively
parallel runs of pF3D, a code whose I/O is written in the
yorick interpreted language. These tools will allow us to
investigate different I/O schemes and understand why they
do or don’t work well on a particular parallel file system
and/or a particular supercomputer. We can use these tools on
today’s petaflop computers to prepare us for the 10-20 petaflop
systems arriving in the next couple of years.

ACKNOWLEDGMENT

The authors would like to thank Dave Munro for many
helpful discussions about the I/O characteristics of yorick. We
would also like to thank ALCF at Argonne National Labora-
tory for an award of Incite time on the Intrepid BlueGene/P
system.

This work was performed under the auspices of the
Lawrence Livermore National Laboratory under
Contract No. DE-AC52-07NA27344

nijhuis2
Text Box
Laboratory under

Time for supervisor to write all visualization data

N w B
o o o

IR
o

o

0 2 4 6

time(sec)

Fig. 5: This figure shows a histogram of the time the I/O group
leader spends receiving visualization data and writing it out
to disk for several 1024 process runs on dawndev. The colors

have the same meaning as in figure 3.

Time to write a checkpoint file
T T I T T T R R O T B R O B O

60—
50—
40—

30—

10i “1
- M

0; Hllleﬂ. J AL
L O e
0 10 20 30 40 50

time(sec)

Fig. 6: The figure shows a histogram of the time to write
a checkpoint restart file to disk for three schemes. The color
code is the same as in previous figures. The dumps are written
in file per process mode for all three runs.

